10,2 homework calculus in th parametric curves (\$ See last page

1. Find $\frac{d y}{d x}, \quad x=t \sin t, y=t^{2}+t$.
for a list of key formulas)

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 t+1}{t \cos t+\sin t}
$$

3. Find an equation of the tangent to the curve $x=t^{4}+1, y=t^{3}+t$ at the point corresponding to $t=-1$.

$$
\begin{align*}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{3 t^{2}+1}{4 t^{3}} \text {. When } t=-1, \frac{d y}{d x}=\frac{3(-1)^{2}+1}{4(-1)^{3}}=\frac{y}{-4}=-1 . \tag{tabular}\\
& y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-(-2)=-1(x-2) \Rightarrow y+2=-x+2 \Rightarrow y=-x \\
& -\frac{1}{d} \quad \\
& -2 \frac{d y}{d x}=-1
\end{align*}
$$

Values for the point-slope formula
5. Find an equation of the tangent to the curve $x=e^{\sqrt{7}}, y=t-\ln t^{2}$ at the point corresponding to $t=1$.

$$
\begin{aligned}
& \begin{array}{l}
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{1-\frac{1}{t^{2}} \cdot 2 t}{e^{\sqrt{F}} \cdot \frac{1}{2} t^{-\frac{1}{2}}}=\frac{1-\frac{2}{t}}{\frac{e^{\sqrt{7}}}{2 \sqrt{F}}}=\frac{2 \sqrt{7}\left(1-\frac{2}{t}\right)}{e^{\sqrt{7}}}=\frac{2(-1)}{e}=\frac{-2}{e} . \\
t x y
\end{array} \\
& \begin{array}{c|c|c}
t & x & y \\
\hline & e & 1 \\
p & \uparrow
\end{array} \quad y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-1=-\frac{2}{e}(x-e) \\
& \Rightarrow y=-\frac{2}{e} x+2+1 \Rightarrow y=-\frac{2}{e} x+3
\end{aligned}
$$

7. a. Find an equation of the tangent to the curve $x=1+\ln t, y=t^{2}+2$ at the point $(1,3)$ without eliminating the parameter. $\left.\begin{array}{l}\text { When } x=1,1=1+\ln t \Rightarrow t=1 \text {. } \\ \text { Also when } y=3,3=t^{2}+2 \Rightarrow t= \pm 1 \text {. }\end{array}\right\}$ Therefore $t=1$ corresponds to the point $(1,3)$.

$$
\begin{aligned}
& \text { Also when } y=3,3=t+2 \Rightarrow \begin{array}{ll}
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t}{\frac{1}{t}}=2 t^{2}=2 . & y-y_{1}=m\left(x-x_{1}\right)
\end{array} \quad \Rightarrow y-3=2(x-1) \\
& \\
&
\end{aligned}
$$

b. Find the eq, of the tangent by elm, the parameter,

$$
\begin{aligned}
& \text { b. Find the eq. of the tangent by elia, the parameter, } \\
& x-1=\ln t \text { so } e^{x-1}=t \text {. Substituting: } y=\left(e^{x-1}\right)^{2}+2 \Rightarrow y=e^{2 x-2}+2 \cdot \frac{d y}{d x}=2 e^{2 x-2} \\
& \\
& =2 \cdot e^{0}=2 .
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-3=2(x-1) \Rightarrow y=2 x-2+3 \Rightarrow y=2 x+1
$$

9. Find an eq. of the tangent (s) to the curve $x=6 \sin t, y=t^{2}+t$ at the point $(0,0)$.

Then graph the curve and the tangent (s).

$$
\begin{aligned}
& \left.\begin{array}{l}
x=0 \Rightarrow 0=6 \sin t \Rightarrow \sin t=0 \Rightarrow t=0, \pi, 2 \pi, \ldots=n \pi \\
y=0 \Rightarrow 0=t^{2}+t \Rightarrow 0=t(t+1) \Rightarrow t=0 \text { or } t=-1 .
\end{array}\right\} \begin{array}{c}
\text { Therefore, } t=0 \text { corresponds } \\
\text { to the point }(0,0) .
\end{array} \\
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 t+1}{6 \cos t}=\frac{1}{6 \cdot 1}=\frac{1}{6} . \quad y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-0=\frac{1}{6}(x-0) \Rightarrow y=\frac{1}{6} x .
\end{aligned}
$$

11. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$. For which values of t is the curve concave upward?

$$
x=4+t^{2}, \quad y=t^{2}+t^{3} \quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t+3 t^{2}}{2 t}=1+\frac{3}{2} t
$$

The formula for $\frac{d^{2} y}{d x^{2}}$ is derived from the $\frac{d y}{d x}$ formula by replacing y with $\frac{d y}{d x}$:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \text { so } \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}} \\
& \text { For \#11, } \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(1+\frac{3}{2} t\right)}{2 t}=\frac{\frac{3}{2}}{2 t}=\frac{3}{4 t}>0 \text { when } t>0 .
\end{aligned}
$$

The curve is concave up for $t>0$.
B. Find $\frac{d y}{d x}$ and $\frac{d^{2} y \text {. For which values of } t \text { is the curve concave upward? }}{d x^{2}}$.

$$
\begin{aligned}
& x=t-e^{t}, y=t+e^{-t} \quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{1-e^{-t}}{1-e^{t}}=\frac{1-\frac{1}{e^{t}}}{1-e^{t}}=\frac{e^{t}-1}{e^{+}\left(1-e^{t}\right)}=\frac{-1}{e^{t}} \\
& \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(-e^{-t}\right)}{1-e^{t}}=\frac{e^{-t}}{1-e^{t}}=\frac{1}{e^{t}\left(1-e^{t}\right)} . \\
& =-e^{-t} . \\
& \text { Since } e^{t}>0 \text { floral } t, \frac{1}{e^{t\left(1-e^{t}\right)}}>0 \text { when } 1-e^{t}>0 \Rightarrow 1>e^{t} \Rightarrow e^{t}<1
\end{aligned}
$$

$$
\Rightarrow+<0 .
$$

So, the curve is concave up for $t<0$.
10.2 homework
15. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$. For which values of t is the curve concave up?

$$
\begin{aligned}
& x=2 \sin t, y=3 \cos t, 0<t<2 \pi \quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-3 \sin t}{2 \cos t}=-\frac{3}{2} \tan t \\
& \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(-\frac{3}{2} \tan t\right)}{2 \cos t}=\frac{-\frac{3}{2} \sec ^{2} t}{2 \cos t}=\frac{-3}{4 \cos ^{3} t}>0 \text { when } \cos ^{3} t<0
\end{aligned}
$$

$\cos ^{3} t<0 \Rightarrow \cos t<0 \Rightarrow \frac{\pi}{2}<t<\frac{3 \pi}{2}$. The curve is concave up for $\frac{\pi}{2}<t<\frac{3 \pi}{2}$.
17. Find all points on the curve where the tangent is horizontal or vertical. $x=10-t^{2}, \quad y=t^{3}-12 t \quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 t^{2}-12}{-2 t}$. The curve has a horizontal tangent when $\frac{d y}{d x}=0 \Leftrightarrow \frac{d y}{d t}=0 \Rightarrow 3 t^{2}-12=0 \Rightarrow 3\left(t^{2}-4\right)=0 \Rightarrow t^{2}-4=0 \Rightarrow t= \pm 2$. There is a vertical tangent when $\frac{d x}{d t}=0 \Rightarrow-2 t=0 \Rightarrow t=0$.
\therefore At the points $(6,16)$ and $(6,-16)$ there are horizontal tangents,

+	x	y
-2	6	16
2	6	-16
0	10	0

19. Find all pts, on the curve $x=2 \cos \theta, y=\sin 2 \theta$ where the tangent is horiz. or vertical.
$\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{2 \cos 2 \theta}{-2 \sin \theta}=\frac{-\cos 2 \theta}{\sin \theta}$. There is a horiz.tangent when $\frac{d y}{d x}=0 \Leftrightarrow$

$$
\begin{aligned}
& \frac{d y}{d \theta}=0 \Rightarrow \cos 2 \theta=0 \Rightarrow\left\{\begin{array}{l}
2 \theta=\frac{\pi}{2}+2 n \pi \rightarrow \theta=\frac{\pi}{4}+n \pi \\
2 \theta=\frac{3 \pi}{2}+2 n \pi \rightarrow \theta=\frac{3 \pi}{4}+n \pi
\end{array}\right\} \Rightarrow \theta=\frac{\pi}{4}+\frac{\pi}{2} n \\
& \text { There are horizontal tangents at the points }(\pm \sqrt{2}, \pm 1) \text {. } \\
& \text { There is a verticaltangent when } \frac{d x}{d \theta}=0 \Rightarrow \sin \theta=0 \\
& \Rightarrow \theta=n \pi
\end{aligned}
$$

There are vertical tangents at $(\pm 2,0)$.
21. Use a graph to estimate the coordinates of the rightmost point on the curve $x=t-t^{6}, y=e^{t}$. Then use calculus to find the exact coordinates. Since there is a vertical tangent at the rightmost point, we

$$
\begin{aligned}
& \text { Since there is a vertical tangent at the righlmost point, we } \\
& \text { need } \frac{d x}{d t}=0 \Rightarrow 1-6 t^{s}=0 \Rightarrow 6 t^{s}=1 \Rightarrow t^{s}=\frac{1}{6} \Rightarrow t=\sqrt[5]{\frac{1}{6}} \\
& t=\frac{1}{s c}
\end{aligned}
$$

Exact coordinates: $x=\frac{1}{\sqrt[5]{6}}-\frac{1}{6 \sqrt[5]{6}}, y=e^{\frac{1}{\sqrt[5]{6}}}$

$$
\approx(.582,2.011)
$$

25. Show that the curve $x=\cos t, y=\sin t \cos t$ has two tangents at $(0,0)$ and find their equations. Sketch the curve. $y=\frac{1}{2} \sin 2 t$

$$
\begin{aligned}
& \text { their equations. Sketch the curve, When } x=0,0=\cos t \Rightarrow t=\frac{\pi}{2}, \frac{3 \pi}{2}, \ldots=\frac{\pi}{2}+n \pi \\
& \begin{array}{r}
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\cos 2 t}{-\sin t} .
\end{array} \begin{array}{r}
\text { When } y=0,0=\frac{1}{2} \sin 2 t \Rightarrow 0=\sin 2 t \Rightarrow 2 t=n \pi \\
\Rightarrow t=\frac{\pi}{2} \cdot n \\
=\frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi, \ldots
\end{array} \\
& \text { The values oft for which both } x=0 \text { and } y=0 \text { are } \begin{array}{r}
t=\frac{\pi}{2}, \frac{3 \pi}{2}, \cdots \\
t=\frac{\pi}{2}+n \pi .
\end{array} \\
& \text { These values } \begin{array}{l}
\text { The point }
\end{array}
\end{aligned}
$$ These t values correspond to the point $(0,0)$ on the curve.

When $t=\frac{\pi}{2}: \quad \frac{d y}{d x}=\frac{\cos 2 \cdot \frac{\pi}{2}}{-\sin \frac{\pi}{2}}=\frac{-1}{-1}=1$.
When $t=\frac{3 \pi}{2}: \frac{d y}{d x}=\frac{\cos 2 \cdot \frac{3 \pi}{2}}{-\sin \frac{3 \pi}{2}}=\frac{-1}{-(-1)}=-1$.
Equation of pst tangat: $y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-0=1(x-0) \Rightarrow y=x$
Equation of 2nd tangent: $y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-0=-1(x-0) \Rightarrow y=-x$

+	x	y
0	1	0
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2} \approx .7$	$\frac{1}{2}$
$\frac{\pi}{2}$	0	0
$\frac{3 \pi}{4}$	$-\frac{\sqrt{2}}{2}=-.7$	$-\frac{1}{2}$
$\frac{\pi}{2}$	-1	0
$\frac{5 \pi}{4}$	$-\frac{\sqrt{3}}{2}=-.7$	$\frac{1}{2}$
$\frac{3 \pi}{2}$	0	0
$\frac{7 \pi}{4}$	$\frac{\sqrt{2}}{2}=.7$	$-\frac{1}{2}$

10.2 homework
31. Use the parametric equations of an ellipse, $x=a \cos \theta, y=b \sin \theta, 0 \leq \theta \leq 2 \pi$, to find the area that it encloses,
Total area $=4 \cdot$ shaded area $=4 \cdot \int_{0}^{a} y d x$
$\left.\begin{array}{l}\text { Note: Integrate from left } \\ \text { to right, so } \frac{\pi}{2} \text { must be the }\end{array}\right\} \rightarrow 4 \cdot \int_{\frac{\pi}{2}}^{0} \underbrace{b \sin \theta}_{y} \cdot \underbrace{(-a \sin \theta d \theta)}_{d x}$

lower limit and 0 the upperlimet.)

$$
\begin{aligned}
& \text { to right, so } \frac{\pi}{2} \text { muss er thant and } 0 \text { the uperlint.) } \\
& =-4 a b \int_{\frac{\pi}{2}}^{0} \sin ^{2} \theta d \theta=4 a b \int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1-\cos 2 \theta) d \theta=2 a b \int_{0}^{\frac{\pi}{2}}(1-\cos 2 \theta) d \theta \\
& =2 a b\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{0}^{\frac{\pi}{2}}=2 a b\left[\left(\frac{\pi}{2}-0\right)-(0-0)\right]=\pi a b .
\end{aligned}
$$

33. Find the area enclosed by the x-axis and the curve $x=1+e^{+}, y=t-t^{2}$.

The curve intersects the x-axis when $y=0 \Rightarrow t-t^{2}=0 \Rightarrow t(1-t)=0 \Rightarrow t=0$ and $t=1$.

$$
\begin{array}{c|c|c}
t & x & y \\
\hline 0 & 2 & 0 \\
1 & 1+e & 0
\end{array}
$$

$=\int_{0}^{1} t e^{t} d t-\int_{0}^{1} t^{2} e^{t} d t$. Use parts for each integral (Ill do them one at a time):

$$
\begin{aligned}
& \left.\int_{0}^{1} t e^{t} d t=t e^{t}-\int e^{t} d t=t e^{t}-e^{t}\right]_{0}^{1}=(\varepsilon-\notin)-(0-1)=1 \text {. } \\
& u=t \quad v=e^{t} \\
& d u=d t d v=e^{t} d t \\
& \begin{array}{ll}
v=e^{t} \\
d u=2 t d t & d v=e^{t} d t
\end{array} \\
& \left.\int_{0}^{1} t^{2}+1 t t^{2} e \int_{0}^{1}-2 \int_{0}^{1}+e^{t} d t=t^{2} e^{t}\right]_{0}^{1}-2 \cdot 1=(e-0)-2=e-2 \text {. } \\
& \begin{array}{l}
\text { From } \\
\text { above }
\end{array}
\end{aligned}
$$

So, $\int_{0}^{1} t e^{t} d t-\int_{0}^{1} t^{2} e^{t} d t=1-\left(e^{-2}\right)=1-e+2=3-e$.
37. Set up an integral that represents the length of the curve. Then use a calculator to find the length correct to four decimal places.

$$
\begin{aligned}
& x=t-t^{2}, y=\frac{4}{3} t^{\frac{3}{2}}, \quad 1 \leq t \leq 2 \quad \frac{d x}{d t}=1-2 t \quad \frac{d y}{d t}=\frac{3}{2} \cdot \frac{4}{3} t^{\frac{1}{2}}=2 \sqrt{t} \\
& L=\int_{1}^{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{1}^{2} \sqrt{(1-2 t)^{2}+(2 \sqrt{t})^{2}} d t=\int_{1}^{2} \sqrt{1-y t+4 t^{2}+4 t} d t
\end{aligned}
$$

$=\int_{1}^{2} \sqrt{1+4 t^{2}} d t \approx 3.1678$ Can use trig sub, to do the integral:

$$
\begin{aligned}
& =\int_{1}^{2} \sqrt{1+4 t^{2}} d t=\frac{1}{2} \int \sec ^{3} \theta d \theta=\frac{1}{2} \cdot \frac{1}{2}[\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|] \\
& \begin{aligned}
& 2 t=\tan \theta \\
& 2 d t=\sec ^{2} \theta d \theta \rightarrow d t=\frac{1}{2} \sec ^{2} \theta d \theta=\frac{1}{4}\left[\sqrt{1+4 t^{2}} \cdot 2 t+\ln \left|\sqrt{1+4 t^{2}}+2 t\right|\right]_{1}^{2} \\
&=\frac{1}{4}[(4 \sqrt{17}+\ln (\sqrt{17}+4))-(2 \sqrt{5}+\ln (\sqrt{5}+2))] \\
&=\frac{1}{4}[4 \sqrt{17}+\ln (\sqrt{17}+4)-2 \sqrt{5}-\ln (\sqrt{5}+2)] \approx 3.1678
\end{aligned}
\end{aligned}
$$

39. Set up an integral that represents the length of the curve. Then use a calculator to find

$$
x=t+\cos t, y=t-\sin t, \quad 0 \leq t \leq 2 \pi
$$

the length correct to 4 decimal places,

$$
\frac{d x}{d t}=1-\sin t \quad \frac{d y}{d t}=1-\cos t
$$

$$
\begin{aligned}
& \frac{d x}{d t}=1-\sin t \quad \frac{d y}{d t}=1-\cos 1 \\
& \left(\frac{d x}{d t}\right)^{2}=1-2 \sin t+\sin ^{-2} t \quad\left(\frac{d y}{d t}\right)^{2}=1-2 \cos t+\cos ^{2} t \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{d x}{d t}\right)^{2}=1-2 \sin t+\sin ^{2} t \quad\left(\frac{d y}{d t}\right)=1-2 \cos 1 T \cos \\
& L=\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{0}^{2 \pi} \sqrt{1-2 \sin t+\sin ^{2} t+1-2 \cos t+\cos ^{2} t} d t \\
& =1
\end{aligned}
$$

$$
=\int_{0}^{2 \pi} \sqrt{3-2 \sin t-2 \cos t} d t \approx 10.0367
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \sqrt{3-2 \sin t-2 \cos t} d t \\
& \text { 41. Find the exact length of the curve } x=1+3 t^{2}, y=4+2 t^{3}, 0 \leq t \leq 1 \\
& \frac{d x}{d t}=6 t,\left(\frac{d x}{d t}\right)^{2}=36 t^{2} \cdot \frac{d y}{d t}=6 t^{2}, \frac{d u)^{2}}{(d t}=36 t^{4} . \quad L=\int_{0}^{1} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{0}^{1} \sqrt{36 t^{2}+36 t^{4}} d t \\
& \left.=\int_{0}^{1} \sqrt{36 t^{2}\left(1+t^{2}\right)} d t=\frac{1}{2} \int_{0}^{1} 6 t \sqrt{1+t^{2}} d t \cdot 2=3 \int_{1}^{2} u^{\frac{1}{2}} d u=3 \cdot \frac{2}{3} u^{\frac{3}{2}}\right]_{1}^{2} \\
& u=1+t^{2}, d u=2 t d t \\
& \frac{t \mid u}{0} 112 \\
& 112
\end{aligned}=2 \cdot\left[2^{\frac{3}{2}}-1\right] .
$$

10.2 homework
57. Set up an integral that represents the area of the surface obtained by rotating the curve about the x-axis. Then use a calculator to find the S.A. correct to 4 decimal places.

$$
\begin{aligned}
& x=1+t e^{t}, y=\left(t^{2}+1\right) e^{t}, 0 \leq t \leq 1 \\
& \frac{d x}{d t}=e^{t}+t e^{t},\left(\frac{d x}{d t}\right)^{2}=\left[e^{t}(1+t)\right]^{2}=e^{2 t}(1+t)^{2}=e^{2 t}\left(1+2 t+t^{2}\right) \\
& \frac{d y}{d t}=2 t e^{t}+\left(t^{2}+1\right) e^{t},\left(\frac{d y}{d t}\right)^{2}=\left[e^{t}\left(2 t+t^{2}+1\right)\right]^{2}=e^{\left.2 t(t+1)^{2}\right]^{2}=e^{2 t}(t+1)^{4}} \\
& S . A \cdot=\int_{0}^{1} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=2 \pi \int_{0}^{1}\left(t^{2}+1\right) e^{t} \sqrt{e^{2 t}(t+1)^{2}+e^{2 t}(t+1)^{4}} d t \\
& =2 \pi \int_{0}^{1}\left(t^{2}+1\right) e^{t} \sqrt{e^{2 t}(t+1)^{2}\left[1+(t+1)^{2}\right]} d t=2 \pi \int_{0}^{1}\left(t^{2}+1\right) e^{t} \cdot e^{t}(t+1) \sqrt{1+(t+1)^{2}} d t \\
& =2 \pi \int_{0}^{1}\left(t^{2}+1\right) e^{2 t}(t+1) \sqrt{1+t^{2}+2 t+1} d t=2 \pi \int_{0}^{1}\left(t^{2}+1\right) e^{2 t}(t+1) \sqrt{t^{2}+2 t+2} d t \\
& \approx 103.5999
\end{aligned}
$$

* Key formulas for parametric curves:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \\
& \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
\end{aligned}
$$

Equation of tangent line:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
\text { Horizontal tangent line: } \frac{d y}{d t}=0
$$

$$
\text { Vertical tangent line: } \frac{d x}{d t}=0
$$

Vertical tangent line: $\frac{d x}{d t}=0$

$$
\begin{aligned}
& \text { Area }=\int_{x_{1}}^{x_{2}} y d x=\int_{t_{1}}^{t_{2}} \text { Whatever you } \\
& \text { Length }=\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{aligned}
$$

Surface Area
Surface Area
When curve is
rotated about
tex $\int_{t_{1}}^{t_{2}} 2 \pi y \sqrt{\left(\frac{(d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
thex-axis

